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Motivation: Computer Applications have Performance Variability
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Motivation: Many Samples are Needed to Measure an Accurate Distribution
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• What if we do not have the resources to run the application many times on the system?

• Can we predict the performance distribution from just a few samples?

• Can we predict the performance distribution from running on another system?

• Train model by learning from other applications

Research Question
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Sneak Peak at Results
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Predicting Performance Distribution from Few Samples
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• Application-independent hardware and software 
metrics (68 metrics from from Linux perf)
• Instruction counts (branches, loads, stores, floating point, 

total)
• Cache metrics (references, hits, misses)
• Main memory metrics
• TLB metrics

• Relative metrics normalized per second
• Unify model across applications with different durations

• If multiple samples, mean, standard deviation, 
skewness, kurtosis
• Higher order moments did not improve results

Representing an Application’s Profile
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Predicting Performance Distribution from Few Samples
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• Histogram: The feature vector is the bins of a histogram of the relative time (similar to a 
discretized PDF)

• Moments: The feature vector is the moments of the distribution (we consider the first four 
moments: mean, standard deviation, skewness, and kurtosis)

• PyMaxEnt: Reconstruct the distribution from the moments using the principle of maximum entropy [30]

• PearsonRnd: Reconstruct the distribution by drawing random numbers from the distribution in the Pearson 
system with these moments

Representing the Performance Distribution
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Predicting Performance Distribution from Few Samples
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• k-nearest neighbors (kNN)
• Can deal with noisy data, which is the case for the metrics we collect
• k = 15
• Distance metric: cosine similarity

• Random forests (RF) and extreme gradient boosting (XGBoost)
• Can deal with a large and diverse set of input features

Choice of Prediction Model
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Predicting Performance Distribution from Few Samples
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• Use 60 benchmarks from popular HPC 
and data analytics applications and 
libraries

• Run application for 1,000 repetitions
(samples) to measure the distribution

Training the Model
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• Hardware specifications
• Intel Xeon Platinum 8358 CPU
• 512GB of DDR4 RAM
• 64 cores total (2 sockets, 32 cores per socket)

• Benchmarking conditions
• The benchmarks ran on an entire node and without any interference

• Error evaluation
• We use cross-validation (leave-one-group-out) to assess the accuracy of the model
• We use the Kolmogorov-Smirnov (KS) divergence test to assess quantify the agreement between the 

observed and predicted distributions (0 is a perfect match, 1 is the worst)

Evaluation Methodology
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Evaluation: Model and Output Representation

Observation #1: kNN has the lowest median KS score
Observation #2: PearsonRnd has the lowest median KS score

Observation #3: Most benchmarks have KS score lower than 0.4
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Evaluation: Number of Samples

Observation: Improved accuracy as number of samples increases
(users can trade off number of samples for accuracy)
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Evaluation: Examples

Observation #1: Width of the distribution predicted accurately

Observation #2: Number of modes and relative positions and sizes predicted accurately
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• Same design considerations as the first use case
• Input distribution includes distribution of profiling metrics, not just perfomance

• Hardware specifications of the second system used
• AMD EPYC 7543 CPU
• 512GB of DDR4 RAM
• 64 cores total (2 sockets, 32 cores per socket)

• 75 profiling metrics different from the ones on the Intel system

Predicting Performance Distributions from Another Distribution on Another System
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Evaluation: Model and Output Representation

Observation #1: kNN has the lowest median KS score
Observation #2: PearsonRnd has the lowest median KS score

Observation #3: Most benchmarks have KS score lower than 0.4
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Evaluation: Direction of Prediction

Observation: Prediction accuracy differs based on direction of prediction but only slightly
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Evaluation: Examples

Observation #1: Width of the distribution predicted accurately

Observation #2: Number of modes and relative positions predicted accurately, but mixed 
success on their relative sizes



ⓒ All rights reserved. American University of Beirut 2023.

• We show that application performance variability can be predicted by learning from other 
applications

• We use application-independent profiling and relative profiling metrics to unify model 
across diverse applications with different durations

• We show that kNN is the best performing model and PearsonRnd is the best method for 
representing the distribution for the purpose of prediction

• Future work:
• Increase training data by covering more applications and systems
• Use explainable models and leverage explanations to optimize for variability

Summary and Future Work
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