

AMERICAN UNIVERSITYOFBEIRUT FACULTY OF ARTS & SCIENCES

Hewlett Packard Enterprise

PREDICTING PERFORMANCE VARIABILITY

Mohammed Baydoun (AUB), Mohammad Sonji (AUB), Pedro Bruel (HPE), Dejan Milojicic (HPE), Eitan Frachtenberg (HPE), <u>Izzat El Hajj</u> (AUB)

The International Workshop on Automatic Performance Tuning (iWAPT'25) June 3, 2025

Motivation: Computer Applications have Performance Variability

Motivation: Many Samples are Needed to Measure an Accurate Distribution

Measured distribution from 1,000 samples

Measured distribution from 3 samples

Measured distribution from 10 samples

Research Question

- What if we do not have the resources to run the application many times on the system?
 - Can we predict the performance distribution from just a few samples?
 - Can we predict the performance distribution from running on another system?
- Train model by learning from other applications

Hewlett Packard Enterprise

Measured distribution from 1,000 samples

Sneak Peak at Results

Measured distribution from 10 samples

20 0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 Relative Time

Predicted distribution from 10 samples

D	Metric		ID	Metric
0	branch-instructions		34	mem_inst_retired.all_loads
1	branch-misses		35	mem_inst_retired.all_stores
2	bus-cycles		36	mem_inst_retired.lock_loads
3	cache-misses		37	branch-load-misses
4	cache-references	1	38	branch-loads
5	cpu-cycles	1	39	dTLB-load-misses
6	instructions		40	dTLB-loads
7	ref-cycles		41	dTLB-store-misses
8	alignment-faults		42	dTLB-stores
9	bpf-output		43	iTLB-load-misses
10	cgroup-switches	1	44	node-load-misses
11	context-switches		45	node-loads
12	cpu-clock		46	node-store-misses
13	cpu-migrations		47	node-stores
14	emulation-faults		48	mem-loads
15	major-faults		49	mem-stores
16	minor-faults		50	slots
17	page-faults		51	assists.fp
18	task-clock		52	cycle_activity.stalls_13_miss
19	duration_time		53	assists.any
20	L1-dcache-load-misses		54	topdown.backend_bound_slots
21	L1-dcache-loads		55	br_inst_retired.all_branches
22	L1-dcache-stores		56	br_misp_retired.all_branches
23	11d.replacement		57	cpu_clk_unhalted.distributed
24	L1-icache-load-misses		58	cycle_activity.stalls_total
25	12_lines_in.all		59	inst_retired.any
26	l2_rqsts.all_demand_miss		60	lsd.uops
27	l2_rqsts.all_rfo		61	resource_stalls.sb
28	12_trans.12_wb		62	resource_stalls.scoreboard
29	LLC-load-misses		63	dtlb_load_misses.stlb_hit
30	LLC-loads		64	dtlb_store_misses.stlb_hit
31	LLC-store-misses		65	itlb_misses.stlb_hit
32	LLC-stores		66	unc_cha_tor_inserts.io_hit
33	longest_lat_cache.miss		67	unc_cha_tor_inserts.io_miss

Representing an Application's Profile

- Application-independent hardware and software metrics (68 metrics from from Linux perf)
 - Instruction counts (branches, loads, stores, floating point, total)
 - Cache metrics (references, hits, misses)
 - Main memory metrics
 - TLB metrics
- Relative metrics normalized per second
 - Unify model across applications with different durations
- If multiple samples, mean, standard deviation, skewness, kurtosis
 - Higher order moments did not improve results

Representing the Performance Distribution

- **Histogram**: The feature vector is the bins of a histogram of the relative time (similar to a discretized PDF)
- **Moments**: The feature vector is the moments of the distribution (we consider the first four moments: mean, standard deviation, skewness, and kurtosis)
 - **PyMaxEnt**: Reconstruct the distribution from the moments using the principle of maximum entropy [30]
 - **PearsonRnd**: Reconstruct the distribution by drawing random numbers from the distribution in the Pearson system with these moments

All rights reserved. American University of Beirut

- *k*-nearest neighbors (kNN)
 - Can deal with noisy data, which is the case for the metrics we collect
 - *k* = 15
 - Distance metric: cosine similarity
- Random forests (RF) and extreme gradient boosting (XGBoost)
 - Can deal with a large and diverse set of input features

Training the Model

Suite	Benchmarks
NPB [38]	bt, cg, ep, ft, is, lu, mg, sp, ua
PARSEC3.0 [39]	blackscholes, bodytrack, canneal, dedup, flu-
	idanimate, freqmine, netdedup, streamclus-
	ter, swaptions
SPEC OMP [2]	358, 362, 367, 372, 376
SPEC Accel [40]	303, 304, 353, 354, 355, 356, 359, 363
Parboil [41]	bfs, cutcp, histo, lbm, mrigridding, sgemm,
	spmv, stencil
Rodinia [42]	backprop, bfs, heartwall, hotspot, kmeans,
	lavaMD, leukocyte, ludomp, particle_filter,
	pathfinder
MLlib [43]	correlation, dtclassifier, fmclassifier, gbtclas-
	sifier, kmeans, logisticregression, lsvc, mlp,
	pca, randomforestclassifier, summarizer

- Use 60 benchmarks from popular HPC and data analytics applications and libraries
- Run application for **1,000 repetitions** (samples) to measure the distribution

Evaluation Methodology

- Hardware specifications
 - Intel Xeon Platinum 8358 CPU
 - 512GB of DDR4 RAM
 - 64 cores total (2 sockets, 32 cores per socket)

Benchmarking conditions

• The benchmarks ran on an entire node and without any interference

Error evaluation

- We use cross-validation (leave-one-group-out) to assess the accuracy of the model
- We use the Kolmogorov-Smirnov (KS) divergence test to assess quantify the agreement between the observed and predicted distributions (0 is a perfect match, 1 is the worst)

Evaluation: Model and Output Representation

Hewlett Packard Enterprise

Evaluation: Number of Samples

Observation: Improved accuracy as number of samples increases (users can trade off number of samples for accuracy)

Evaluation: Examples

Observation #1: Width of the distribution predicted accurately

Observation #2: Number of modes and relative positions and sizes predicted accurately

Predicting Performance Distributions from Another Distribution on Another System

- Same design considerations as the first use case
 - Input distribution includes distribution of profiling metrics, not just perfomance
- Hardware specifications of the second system used
 - AMD EPYC 7543 CPU
 - 512GB of DDR4 RAM
 - 64 cores total (2 sockets, 32 cores per socket)
- **75 profiling metrics** different from the ones on the Intel system

Evaluation: Model and Output Representation

Violin Plot of KS Scores - AMD to Intel

Hewlett Packard Enterprise

Evaluation: Direction of Prediction

Observation: Prediction accuracy differs based on direction of prediction but only slightly

Evaluation: Examples

Observation #1: Width of the distribution predicted accurately

Observation #2: Number of modes and relative positions predicted accurately, but mixed success on their relative sizes

All rights reserved. American University of Beiru

- We show that application performance variability can be predicted by learning from other applications
- We use **application-independent profiling** and **relative profiling metrics** to unify model across diverse applications with different durations
- We show that **kNN** is the best performing model and **PearsonRnd** is the best method for representing the distribution for the purpose of prediction
- Future work:
 - Increase training data by covering more applications and systems
 - Use explainable models and leverage explanations to **optimize for variability**

AMERICAN UNIVERSITYOFBEIRUT FACULTY OF ARTS & SCIENCES

Hewlett Packard Enterprise

PREDICTING PERFORMANCE VARIABILITY

Mohammed Baydoun (AUB), Mohammad Sonji (AUB), Pedro Bruel (HPE), Dejan Milojicic (HPE), Eitan Frachtenberg (HPE), <u>Izzat El Hajj</u> (AUB)

The International Workshop on Automatic Performance Tuning (iWAPT'25) June 3, 2025

